

SCIENCE CENTRE

Location: Maganjo, Opp. Pr Deo's church For; Science lessons, text books, stationery etc..

Contact: 07701467746/0787119579

E-mail: atomsciencecentre@gmail.com

END OF JULY TEST EXAMS 2021 S.5 CHEMISTRY 2 HOURS

Topics: PERIODICITY, BONDING AND STRUCTURE, ALKENES, ALKYNES

1	(a)	Distinguish between ionization energy and electron affinity (1 mark)				
	(b)	Write equations to illustrate (1 mark@)				
		i. 1 st ionization energy of Al				
		ii. 3 rd ionization energy of Boron				
		iii. 2 nd electron affinity of Sulphur				
	(c)	Explain the following observations				
	` '	i. The value of ionization energy progressively increases as more electrons are removed from the atom (03 marks).				
		ii. The 1 st electron affinity of most elements is always higher than the second (02 marks)				
2	(a)	How does formation of a covalent bond differ from that of an ionic bond. (01 mks)				

(b)	Explain what is meant by the following terms;(01 mark@) i. Polarization					
	ii.	Polariza	bility			
	iii.		ng power			
	iv.	Charge o	density			
	•••••			• • • • • • • • • • • • • • • • • • • •		
(c)	_		ng observati		point than	sodium chloride.
	i. Aiuiiii	mum cmoi	iue nas a mg	gner mennig	point than s	(03 marks)
	• • • • • • • • • • • • • • • • • • • •					
				• • • • • • • • • • • • • • • • • • • •		
	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	••••••	
		n dioxide e as a solid.	exists as a ga	s at room te	mperature w	hereas silicon (iv) oxide (02 marks).
	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		
	•••••			• • • • • • • • • • • • • • • • • • • •		
	iii. The bo	of 2-nitrophenol. (02 mark)				
	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	
	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
3 Draw	and name t	the shapes	of the follow	ving molecul	les. (12 mar)	ks)
MOLECU	JLES / ION		SHAPE			NAME OF THE SHAPE
PH ₃						

MOLECULES / ION	SHAPE	NAME OF THE SHAPE
PH ₃		
CO_3^{2-}		

go. 2-	
SO ₃ ² -	
11.00	
H ₂ SO ₄	
SnCl ₂	
PBr ₅	
50.	
SO_2	
$H_2PO_4^-$	
NO ₃ -	
NO ₂ -	

	_	f a compound X contains carbon, hydrogen and nitrogen only. X on combustion ed 5.2g of carbon dioxide gas and 224cm ³ of nitrogen at s.t.p.			
		Determine the empirical formula of X.			
	b)	When vaporized, 0.2g of X occupied 81cm ³ at 184.1°c and 101.325 KPa. Determine the molecular formula of X.			
		the molecular formation 71.			
	c)	Complete and write an acceptable mechanism for each of the following reactions.			
	ĺ	CH ₂ CH ₂ OH			
i.	Į	$\frac{\text{Conc. H}_3\text{PO}_4}{\text{Heat}}$			
		V Heat			
ii.	C	$H_3CH_2CHCH_2Br$ $Reflux$ KOH / C_2H_5OH $Reflux$			
		Cl			
iii.		KOH / EtOH			
	(Reflux			

iv.	H_2O/H_2SO_4
	equations, show how the following conversions can be effected. Show all the nts and the required conditions.
a)	CH ₄ from CH ₃ CH ₂ OH
b)	CH3≡CH from CaC ₂
	CH ₂ Br to
c)	
d)	OH Br From